Talyrond® 595H
A revolutionary concept in automated roundness inspection
The Talyrond 595H series
A new concept in roundness measurement

Measure three critical performance elements...

Roundness, Surface finish, and now Contour

...exactly as they were produced

High precision emulation of your manufacturing process
The all-new Talyrond 595H roundness instruments use rotary, vertical and horizontal measuring datums to duplicate your machine tool's movement and exactly reproduce the workpiece shape. This ultra high precision simulation of the cutting tool path enables precise control of your manufacturing process.

Reproducible measurement results
Decades of experience, ultra precision machining expertise and FEA optimized design combine to provide low noise and near flawless mechanical execution of the measuring axes. Further enhancement via the use of traceable standards and exclusive algorithms effectively eliminates instrument influence from the measurement results.

Monitoring manufacturing

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Roundness</th>
<th>Roughness</th>
<th>Contour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge Range</td>
<td>Radial Accuracy</td>
<td>Noise</td>
<td>LS Arc measurement</td>
</tr>
<tr>
<td>Up to 4 mm</td>
<td>± 0.008 μm</td>
<td>Less than 20 nm Rq all axes</td>
<td>5 μm</td>
</tr>
<tr>
<td>Resolution</td>
<td>Ra values</td>
<td>Pt</td>
<td>0.5 μm</td>
</tr>
<tr>
<td>Down to 0.3 nm</td>
<td>Less than 0.05 μm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unparalleled measurement capability
Five measurements in one

Emulating the manufacturing process with a higher degree of precision allows all features to be measured on one instrument.

1. **Roughness**
 - High resolution gauge and low axis noise enables linear or circumferential surface roughness measurement.

2. **Roundness**
 - Frictionless air bearing spindle and precision column for roundness, cylindricity and straightness measurements.

3. **Contour**
 - Our patented calibration technique enables measurement of radius, angle, height, length, distance and more.

4. **Cylindrical mapping**
 - Precision control and low noise in all axes allows in depth analysis of cylindrical components including wear scars and material volume.

5. **Cams and pistons**
 - A precision encoder and linear scales in all axes enables measurement of non round parts such as cams and pistons.
Advanced harmonics – identify the cause of bad parts

Ordinary inspection might detect bad components but Talyrond 595H can help you fix the production issues that are causing them. Deviation in form on a workpiece can be broken down into irregularities that have both frequency and amplitude. Harmonic analysis identifies these imperfections allowing you to pinpoint and correct their cause, reducing the need for ever tighter tolerances on size.

• Full histogram view with tolerance bands
• Pass/Fail and warning messages
• Ranking system according to wave depth or harmonic amplitude
• Comparison to CSV or GKD files
• Up to 5000 upr
• Wave depth or harmonic amplitude format

Precision harmonic standard

A precision machined standard with the following undulations in 360 degrees:

| 15 upr | 50 upr | 150 upr | 500 upr | 1500 upr |

“Giving confidence in your instrument.”

3D cylindrical mapping

For production issues beyond the scope of traditional 2D inspection techniques

With high accuracy and high resolution in all axes, Talyrond 595H allows you to measure in 3 dimensions for more thorough examination of flaws, defects and cutting tool geometry effects that influence performance or lead to component malfunction.

• Twist or lead detection
• Machining defects
• Wear scar analysis
• Leak detection and more
Q-Link Production Interface
A simplified interface designed specifically for production environments

- Q-DAS accredited
- Compatible with all instruments
- Simple operation
- User levels
- Traceable fields
- Simple tolerancing
- Automatic summary reports
- Automatic statistical studies
Applications

Inner bearing races
- Harmonic analysis
- Form & radius analysis
- Roundness

Roller bearings
- Roundness
- Tilt and form error to axis of rotation

Fuel injectors
- Angle and distance
- Roundness
- Parallelism
- Surface finish

Cylinders
- Parallelism
- Cylindricity

Turbo chargers
- Surface finish
- Parallelism
- Cylindricity
Ultra precision bearings are produced to the highest standards available. They are used in industries with a necessity for critical tolerances, high speeds and reliable performance under demanding operating conditions. Ultra precision bearings are also used in safety-critical and harsh environment applications.

Industries and applications:
- Automotive
- Aerospace
- Bearings
- Hydraulics
- Optics
- Dental and medical
- Industrial plants

“Having the responsibility to ensure 1.5 million bearings each year are manufactured to the highest quality, means controlling our components at all stages of manufacturing. We have 15 Taylor Hobson roundness measuring instruments that help us maintain high throughput and the accuracies we require to ensure every one of our bearings is of the highest quality.”

Measurement Q/A Coordinator – Leading global bearings manufacturer
Reproducing the part
Taylor Hobson’s core competencies are in cylindrical grinding, surface grinding and diamond turning. All of these disciplines coupled with knowledge in drive mechanisms go towards constructing an instrument with low noise and high geometric accuracy, ensuring reproducibility of the component.

Frictionless air bearing spindle
The instrument’s spindle axis, like any spindle based machine tool, is paramount in ensuring integrity of measurement. Utilising Taylor Hobson’s own diamond turning lathe we are able to create a reference datum unsurpassed in accuracy and reliability.

Instrument base
Using finite element analysis software, the cast iron base provides a solid foundation for both the high precision air bearing spindle and vertical straightness datum, ensuring movement and weight do not effect results. A choice of passive or active isolation mounts are available, which have been designed for either inspection laboratories or production environments.

Straightness datums
The vertical column is machined for straightness, waviness and roughness to an exacting standard, using traceable standards and techniques developed by Taylor Hobson. The straightness datums are further enhanced to ensure reproducibility of the part with little or no instrument influence.

Important features of a roundness system

1. Parallelism of column to spindle axis
2. Column and arm straightness
3. Low vertical and radial arm noise
4. Squareness of arm to spindle axis
5. Radial run-out of spindle
6. Low spindle noise
7. Minimised coning error of spindle
8. Accurate glass scales in all axes
Industry specific software

Velocity analysis allows bearing manufacturers to evaluate harmonics with respect to amplitude and predict function with respect to speed.

Traceability

Full traceability to international standards

Traceability
All calibration standards can be provided with traceability to international standards using Taylor Hobson’s own UKAS laboratory.

Roundness
Using a precision polished glass hemisphere calibrated to an uncertainty of less than 5nm Taylor Hobson can guarantee your spindle is within specification and maintain quality of results.

Straightness, squareness and parallelism
To ensure the column and radial straightness unit conform to specification we can provide standards that are either cylindrical or flat. These standards provide certainty of the measurement axes. These artefacts are combined with special software routines to enhance all axes for correct geometrical form.

Surface finish
A unique standard is available that provides measurement traceability for roughness in both a vertical and circumferential direction.

Arcuate correction (contour option)
Taylor Hobson’s patented calibration routine and calibration ball corrects for the arcuate motion of the stylus allowing dimensional measurement. This routine is critical to measurement of radius and angled parts when normal calibration routines will not suffice.

Gain correction
The Talyrond 595H has a unique automated gain calibration for the instrument’s gauge; the routine is automated and takes a matter of seconds to set. Alternatively a set of calibrated slip blocks traceable to primary standards are also supplied.

Axis calibration
Automated or manual routines are supplied allowing the user to set coordinates to the part or instrument axes. The fully automated routine calibrates the arm, column and spindle.
All the accessories you need to begin using Taylor Hobson roundness measuring systems are supplied as standard. However, for more demanding requirements or improved measurement throughput, we have a range of accessories which may be ordered separately.

1. Environmental cabinet and active AV mounts
 Recommended for use in production or non controlled environments
 - Environmental cabinet
 The environmental cabinet forms part of the instrument structure and protects against airflow, dust and external influence
 code 112/4276
 - Active anti-vibration mounts
 The active AV mounts protect the system from external vibration by use of piezo actuated mounts
 code 112/4277
 - Active AV mounts with environmental cabinet
 Provides isolation from airflow, dust and external vibration
 code number 112/4278

2. Talyrond ball calibration standard
 Required for use with contour or form software, this calibration standard corrects for gain, tip and arcuate motion of the stylus
 - Talyrond ball standard rad 7.5mm
 [Not recommended for 4 mm range]
 code 112-4305UC
 - Talyrond ball standard rad 12.5mm
 [Not recommended for 4 mm range]
 code 112-4319UC
 - Talyrond ball standard rad 22.5mm
 code 112-4092UC

3. Calibration standard for vertical and circumferential roughness
 code 112/4341 UCR

4. Six jaw component chuck
 A 6 jaw precision scroll chuck.
 Capacity - Inside diameter 20 mm - 95 mm [0.78 in - 3.74 in].
 Capacity - Outside diameter 2 mm - 32 mm [0.08 in - 1.26 in].
 code 112/1859 optional

5. Standard stylus arms
 Ruby ball x 100 mm [3.9 in]
 1 mm [0.039 in], code 112/3245
 2 mm [0.078 in], code 112/3244
 4 mm [0.157 in], code 112/3243

6. Precision collet chuck - removable
 three ball type location [for use with manual or automated tables]
 Note: Collet required – see list below.
 code 112/3662
 - code 112/3554-1.0 1 mm Collet
 - code 112/3554-1.5 1.5 mm Collet
 - code 112/3554-2.0 2 mm Collet
 - code 112/3554-2.5 2.5 mm Collet
 - code 112/3554-3.0 3.0 mm Collet
 - code 112/3554-3.5 3.5 mm Collet
 - code 112/3554-4.0 4.0 mm Collet
 - code 112/3554-4.5 4.5 mm Collet
 - code 112/3554-5.0 5 mm Collet
 - code 112/3554-5.5 5.5 mm Collet
 - code 112/3554-6.0 6 mm Collet
 - code 112/3554-6.5 6.5 mm Collet
 - code 112/3554-7.0 7 mm Collet
 - code 112/3554-7.5 7.5 mm Collet
 - code 112/3554-8.0 8 mm Collet

7. Adjustable End Stop
 Recommended for use with 112/3549 or 112/3662; may require modification to suit the component under test.
 code 112/3555

8. Bar stylus
 A 100mm [3.9 in] stylus for measuring small diameter components.
 code 112/3489 optional

9. Diamond styli
 Conisphere stylus with 90° included angle; required for cylindrical mapping or surface finish applications.
 code 112/3806 optional 5 µm Rad
 code 112/3807 optional 10 µm Rad

10. Kinematic dowel support set
 For stable workpiece mounting.
 code 112/1861 standard

11. Reservoir assembly kit
 If the air supply is unreliable or of poor quality then the reservoir assembly is recommended to provide an even flow of air to the spindle.
 code 112/2869 optional
Force setting gauge
Recommended with diamond styli and where specific stylus forces are required.
code 112/3808 optional

High precision glass hemisphere
For checking total system performance; UKAS calibration certificate is optional.
Roundness < 0.02 µm (0.8 µ")
code 112/2324 optional

Glass hemisphere
For checking total system performance; UKAS calibration certificate is optional.
Roundness < 0.05 µm (2 µ")
code 112/436 optional

High precision test cylinder
For verification of the instrument’s vertical straightness accuracy and parallelism of the vertical axis to the spindle axis. UKAS calibration certificate is optional.
code 112/3670-01 optional

Precision test cylinder
For checking the instrument’s vertical straightness accuracy and parallelism of the vertical axis to the spindle axis. UKAS calibration certificate is optional.
300 mm (11.8") cylinder
Roundness < 0.25 µm (10 µ")
Straightness < 0.5 µm (20 µ")*
code 112/1888 optional

500 mm (19.7") cylinder
Roundness < 0.25 µm (10 µ")
Straightness < 0.5 µm (20 µ")*
code 112/1997 optional

1000 mm (39.4") cylinder
Roundness < 0.75 µm (30 µ")
Straightness < 3 µm (120 µ")*
code 112/3604 optional

* Straightness over central 90% of test cylinder length

Cresting standard
For checking the vertical and horizontal alignment of the gauge head.
code 112/1876 optional

Flick standard
For rapid calibration of the gauge head; alternative to the standard gauge calibration set.
20 µm (788 µ") range
code 112/2308 Optional
300 µm (0.012") range
code 112/2233 optional

Calibration set
For calibrating the gauge head. The set comprises a circular glass flat and four gauge blocks. UKAS calibration certificate is optional.
code 112/2889 standard

Instrument cover
To protect the instrument when not in use.
code 112/1393 optional

ECU Fuse kit
code 112/4234 optional

Pre-filter element
code 112/3351 optional

Accessory case
A useful case for carrying standard and optional accessories.
code 48/453 optional

Set of hexagonal wrench keys
To assist with minor adjustments on the instrument.
code 630/412 optional

Coalescing filter element
Secondary filter to be changed every 3 months to maintain a clear air supply, (1 included with the instrument).
code 112/3378 optional

Customised solutions for special applications
Our strategy for success is simple, instead of just selling products, we provide solutions. If our standard instruments and accessories do not satisfy your needs, we can customise a solution to exactly match your application. This may include such things as work holding devices or special styli for applications such as small bores, shoulders or undercuts.

Specifications are subject to change without notice.
Talyrond 595H Specification

Analysis capability

<table>
<thead>
<tr>
<th>Standard software</th>
<th>Optional software</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundness</td>
<td>Piston measurement</td>
<td></td>
</tr>
<tr>
<td>Squareness</td>
<td>Commutator analysis</td>
<td></td>
</tr>
<tr>
<td>Concentricity</td>
<td>Disk thickness variation</td>
<td></td>
</tr>
<tr>
<td>Coaxiality</td>
<td>Velocity analysis</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>Wall thickness variation</td>
<td></td>
</tr>
<tr>
<td>Cylindricity</td>
<td>Advanced harmonics</td>
<td></td>
</tr>
<tr>
<td>Total run-out</td>
<td>Groove analysis</td>
<td></td>
</tr>
<tr>
<td>Flatness</td>
<td>Harmonics</td>
<td></td>
</tr>
<tr>
<td>Eccentricity</td>
<td>TalyMap Contour Software</td>
<td></td>
</tr>
<tr>
<td>Run-out</td>
<td>TalyMap 3D analysis Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circumferential Surface finish analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface finish analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Twist analysis</td>
<td></td>
</tr>
</tbody>
</table>

Measurement capability

<table>
<thead>
<tr>
<th>Column axis</th>
<th>300 mm column</th>
<th>500 mm column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straightness over column length</td>
<td>0.2 μm / 300 mm (8 μm / 11.8 in)</td>
<td>0.2 μm / 500 mm (8 μm / 19.7 in)</td>
</tr>
<tr>
<td>Straightness over any 100mm (3.94in)</td>
<td>0.12 μm / 100 mm (4.7 μm / 3.94 in)</td>
<td>0.15 μm / 100 mm (5.9 μm / 3.94 in)</td>
</tr>
<tr>
<td>Vertical axis to spindle axis parallelism</td>
<td>0.5 μm / 300 mm (20 μm / 11.8 in)</td>
<td>0.5 μm / 500 mm (20 μm / 19.7 in)</td>
</tr>
<tr>
<td>Length measurement</td>
<td>(0.03 μm/mm + 1.5 μm)</td>
<td></td>
</tr>
<tr>
<td>Column noise †</td>
<td><20 nm Rq</td>
<td></td>
</tr>
<tr>
<td>Spindle axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial limit of error</td>
<td>± 0.008 μm (1-15 upr) or ± 0.01 μm (1-50 upr)</td>
<td></td>
</tr>
<tr>
<td>Axial limit of error</td>
<td>± 0.01 μm (1-15 upr) or ± 0.015 μm (1-50 upr)</td>
<td></td>
</tr>
<tr>
<td>Coning Error (height above table)</td>
<td>± 0.00025 μm/mm</td>
<td></td>
</tr>
<tr>
<td>Coning Error (radius from centre)</td>
<td>± 0.00025 μm/mm</td>
<td></td>
</tr>
<tr>
<td>Horizontal arm axis</td>
<td>Radial straightness unit</td>
<td></td>
</tr>
<tr>
<td>Straightness over full length of travel</td>
<td>0.25 μm / 200 mm (4 μm / 7.9 in)</td>
<td></td>
</tr>
<tr>
<td>Straightness over any length of travel</td>
<td>0.125 μm + 0.000375 μm/mm (5 μm + 0.015 μm/in)</td>
<td></td>
</tr>
<tr>
<td>Squareness to spindle axis</td>
<td>1 μm / 200 mm (39.4 μm / 7.9 in)</td>
<td></td>
</tr>
<tr>
<td>Radial measurement *</td>
<td>(0.1 μm/mm + 1.5 μm)</td>
<td></td>
</tr>
<tr>
<td>Arm noise †</td>
<td><20 nm Rq</td>
<td></td>
</tr>
<tr>
<td>Gauge</td>
<td>Range/resolution</td>
<td></td>
</tr>
<tr>
<td>High range</td>
<td>± 2 mm , 0.016 μm resolution (0.078 in range, 0.6 μin resolution)</td>
<td></td>
</tr>
<tr>
<td>Normal range</td>
<td>+/- 1 mm range, 0.008 μm resolution (0.039 in range, 0.3 μin resolution)</td>
<td></td>
</tr>
<tr>
<td>Mid range</td>
<td>+/- 0.2 mm range, 0.0016 μm resolution (0.0078 in range, 0.06 μin resolution)</td>
<td></td>
</tr>
<tr>
<td>Low range</td>
<td>+/- 0.04 mm range, 0.0003 μm resolution (0.003 in range, 0.012 μin resolution)</td>
<td></td>
</tr>
</tbody>
</table>

Component capacity

<table>
<thead>
<tr>
<th>Measuring capacity</th>
<th>300 mm column</th>
<th>500 mm column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum component height</td>
<td>300 mm (11.82 in)</td>
<td>500 mm (19.7 in)</td>
</tr>
<tr>
<td>Maximum component diameter</td>
<td>Ø 400 mm (15.7 in)</td>
<td></td>
</tr>
<tr>
<td>Maximum measuring depth</td>
<td>155 mm (6.1 in)</td>
<td></td>
</tr>
<tr>
<td>Maximum measuring diameter</td>
<td>Ø 350 mm (13.8 in)</td>
<td></td>
</tr>
<tr>
<td>Maximum component weight</td>
<td>Auto Center and Level: 40 kg (88 lb)</td>
<td></td>
</tr>
</tbody>
</table>

† Vertical traverse measured with a 10 Kg load at 200 mm height; horizontal traverse measured with a 20 Kg load at 400 mm height. All measurements based on a nominally leveled glass flat using the specified stylus; analyzed using a Gaussian filter, 0.8 mm cut off, 3001 bandwidth and parameter Rq.

* Based on measurements made within 2 mm radius of a calibrated ring or plug gauge.
Technical

<table>
<thead>
<tr>
<th>Column axis</th>
<th>300 mm column</th>
<th>500 mm column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column construction</td>
<td>Precision machined cast iron datum</td>
<td></td>
</tr>
<tr>
<td>Movement range</td>
<td>300 mm (11.8 in)</td>
<td>500 mm (19.7 in)</td>
</tr>
<tr>
<td>Speed of traverse - moving</td>
<td>0.1 - 105 mm/s (0.04 - 4.1 in/s) stepped</td>
<td></td>
</tr>
<tr>
<td>- measuring</td>
<td>0.1 - 20 mm/s (0.01 - 0.8 in/s) stepped</td>
<td></td>
</tr>
<tr>
<td>- contacting</td>
<td>0.5 - 5 mm/s (0.02 - 0.2 in/s) stepped</td>
<td></td>
</tr>
<tr>
<td>Positional control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positional resolution</td>
<td>4 μm (160 μin)</td>
<td></td>
</tr>
<tr>
<td>Number of data points (selectable)</td>
<td>200,000 maximum</td>
<td></td>
</tr>
</tbody>
</table>

Horizontal arm axis

Arm construction	Lapped ceramic datum
Speed of traverse - moving	0.25 - 15 mm/s (0.01 - 0.6 in/s) stepped
- measuring	0.25 - 15 mm/s (0.01 - 0.6 in/s) stepped
- contacting	0.5 - 5 mm/s (0.02 - 0.2 in/s) stepped
Over-center travel	25 mm (0.98 in)
Positional control	+/- 5 μm (200 μin)
Positional resolution	0.25 μm (10 μin)
Minimum movement	0.05 mm (0.002 in)
Number of data points (selectable)	200,000 maximum

Centering and leveling table

Achievable accuracy of auto centering	<0.3 μm (12 μin)
Achievable accuracy of auto leveling	<0.8 arc secs
Construction	Patented 3 point kinematic support
Center and leveling table control	Automatic with continuous spindle rotation
Follow mode center and leveling	Yes
Centering range	2.5 mm (0.2 in)
Leveling range	+/- 0.5 μ
Worktable diameter	300 mm (11.8 in)

Gauge attitude/orientation

Control	Automatic
Attitude	Horizontal and Vertical
Attitude Vertical	Internal/External
Attitude Horizontal	Up/Down Extend/Retract
Orientation	Rotation in steps of 1 °

Gauge

Gauge type	Talymn 6 single bias inductive transducer
Stylus tip force	0 to 4 g adjustable (roundness mode)
Crutch angle	Adjustable
Cresting (TR585)	Dual cresting facility (horizontal & vertical)

Electrical (alternating supply, single phase with earth, 3-wire)

Instrument & computer voltage	90V - 130V or 200V - 260V (switch selectable)
Frequency	47 Hz to 63 Hz
Power consumption	500 VA maximum
Safety	BS EN 61010-1, BS EN 349, BS EN 13850, BS EN 983, BS EN 60204 Machinery Directive standards.
EMC	BS EN 61000-6-1:2001, BS EN 61000-6-4:2001

Air supply

Air pressure	550 to 1030 kPa (5.5 to 8 bar) (80 to 116 psig)
Regulator (pre-set)	350 kPa (3.5 bar) (50 psi)
Max. particle size	5 micron (0.0002 in)
Moisture content – dew point	+3 °C (37 °F)
Flow rate at operating pressure	150 litres/minute (minimum) 5.3 ft³/minute
Max oil content	25 mg/m³ (0.01 grains/ft³)
Solid Particle Content	5 mg/m³ (0.002 grains/ft³)

Environment

Operating temperature	10 °C to 35 °C (50 °F to 95 °F)
Storage temperature	-10 °C to 50 °C (14 °F to 122 °F)
Temperature gradient	< 2 °C / hour (< 3.6 °F / hour)
Operating humidity	30 % to 80 % relative humidity, non condensing
Storage humidity	10 % to 90 % relative humidity, non condensing
Maximum RMS vertical	0.05 mm/s (0.002 in/s) at < 50 Hz
Floor vibration	0.10 mm/s (0.004 in/s) at > 50 Hz

All accuracies are quoted at 20°C ± 1°C (68°F ± 1.8°F). All roundness and flatness results are quoted as the departure from the Least Squares Circle (LSC) at 1-50 and 1-15 upc. Gaussian filter: 6 RPM clockwise rotation (unless otherwise specified). All errors are quoted as maximum permissible errors (MPE). All straightness / parallelism results are quoted with an 8 mm cut-off, low pass filter: Minimum Zone (MZ) reference. All accuracies are quoted at 95% confidence in accordance with recommendations in the ISO Guide to the Expression of Uncertainty in Measurement (GUM:1993).

Taylor Hobson pursues a policy of continual improvements due to technical developments. We therefore reserve the right to deviate from catalog specifications.
Talyrond 595H floor plan

Talyrond 595H with desk

Talyrond 595H with cabinet

Talyrond 595H with desk

Optional cabinet
Parameters

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Measurement mode</th>
<th>Evaluation diagram</th>
<th>Talyrond 595H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundness</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Parallelism</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cylindricity</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Straightness</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Flattness</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Coaxiality</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Concentricity</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Eccentricity</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Measurement mode</th>
<th>Evaluation diagram</th>
<th>Talyrond 595H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial Runout</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Squaring</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Parallelism</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Measure Interrupted Surface</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Harmonic Analysis</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Thickness Variation</td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

✓ = Included – ● = Optional – × = Not available

(Customer specific analysis available on request)
Serving a global market

Taylor Hobson is world renowned as a manufacturer of precision measuring instruments used for inspection in research and production facilities. Our equipment performs at nanometric levels of resolution and accuracy.

To complement our precision manufacturing capability we also offer a host of metrology support services to provide our customers with complete solutions to their measuring needs and total confidence in their results.

Contracted services from Taylor Hobson

Sales department
Email: taylor-hobson.sales@ametek.com
Tel: +44 (0)116 246 2034

- Design engineering
 special purpose, dedicated metrology systems for demanding applications
- Precision manufacturing
 contract machining services for high precision applications and industries

Service department
Email: taylor-hobson.service@ametek.com
Tel: +44 (0)116 246 2900

- Preventative maintenance
 protect your metrology investment with an Amecare support agreement

Centre of Excellence department
Email: taylor-hobson.cofe@ametek.com
Tel: +44 (0)116 276 3779

- Inspection services
 measurement of your production parts by skilled technicians using industry leading instruments in accord with ISO standards
- Metrology training
 practical, hands-on training courses for roundness and surface finish conducted by experienced metrologists
- Operator training
 on-site instruction will lead to greater proficiency and higher productivity
- UKAS calibration and testing
 certification for artifacts or instruments in our laboratory or at customer’s site

Taylor Hobson UK
(Global Headquarters)
PO Box 36, 2 New Star Road
Leicester, LE4 9JQ, England
Tel: +44 (0)116 276 3771 Fax: +44 (0)116 246 0579
e-mail: taylor-hobson.uk@ametek.com

Taylor Hobson France
Rond Point de l’Epine Champs
Batiment D, 78990 Elancourt, France
Tel: +33 130 60 89 30 Fax: +33 130 60 89 39
taylor-hobson.france@ametek.com

Taylor Hobson Germany
Postfach 4827, Kreuzberger Ring 6
65205 Wiesbaden, Germany
Tel: +49 611 973040 Fax: +49 611 97304600
taylor-hobson.germany@ametek.com

Taylor Hobson India
1st Floor Prestige Featherlite Tech Park
14B, EPP II Phase, Whitefield, Bangalore – 560 006
Tel +91 1860 2662 468 Fax: +91 80 6782 3232
taylor-hobson.india@ametek.com

Taylor Hobson Italy
Via De Bassi
20087 Becco sul Naviglio, Milan, Italy
Tel: +39 02 946 93401 Fax: +39 02 946 93450
taylor-hobson.italy@ametek.com

Taylor Hobson Japan
3F Shiba NBF Tower, 1-1-30, Shiba Daimon Minato-ku
Tokyo 105-0012, Japan
Tel: +81 (0) 3 6809-2406 Fax: +81 (0) 3 6809-2410
taylor-hobson.japan@ametek.com

Taylor Hobson Korea
310, Gyeonggi R&D Center, Posto 6-5, luidong
Yongtong-gu, Suwon, Gyeonggi, 443-766, Korea
Tel: +82 31 888 5255 Fax: +82 31 888 5256
taylor-hobson.korea@ametek.com

Taylor Hobson China
Beijing Office
Western Section, 2nd Floor, Jing Dong Fang Building (B10)
No.10, Jiu Xian Qiao Road, Chaoyang District, Beijing, 100015, China
Tel: +86 10 8526 2111 Fax: +86 10 8526 2141
taylor-hobson.beijing@ametek.com

Taylor Hobson China
Shanghai Office
Part A,1st Floor, No.460 North Fute Road, Waigaoqiao
China (Shanghai) Pilot Free Trade Zone, 200131
Tel: +86 21 5868 5111 Fax: +86 21 5866 0969-110
Taylor Hobson.shanghai@ametek.com

Taylor Hobson Singapore
AMETEK Singapore, 10 Ang Mo Kio Street 6-5
No.05-12 Techpoint, Singapore 569059
Tel: +65 6484 2388 Ext 120 Fax: +65 6484 2388 Ext 120
taylor-hobson.singapore@ametek.com

Taylor Hobson USA
1725 Western Drive
West Chicago, Illinois 60185, USA
Tel: +1 630 621 3099 Fax: +1 630 231 1739
taylor-hobson.usa@ametek.com

www.taylor-hobson.com

Copyright © 2014 • Taylor Hobson • Talryn 595H_EN_21 October